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Distributional Properties of Relative Phase 
in Bimanual Coordination

Eric James, Charles S. Layne, Karl M. Newell

Studies of bimanual coordination have typically estimated the stability of coordina-
tion patterns through the use of the circular standard deviation of relative phase. 
The interpretation of this statistic depends upon the assumption of a von Mises 
distribution. The present study tested this assumption by examining the distribu-
tional properties of relative phase in three bimanual coordination patterns. There 
were significant deviations from the von Mises distribution due to differences in 
the kurtosis of distributions. The kurtosis depended upon the relative phase pattern 
performed, with leptokurtic distributions occurring in the in-phase and antiphase 
patterns and platykurtic distributions occurring in the 30° pattern. Thus, the dis-
tributional assumptions needed to validly and reliably use the standard deviation 
are not necessarily present in relative phase data though they are qualitatively 
consistent with the landscape properties of the intrinsic dynamics.
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In the synergetic approach to the study of dynamic systems (Haken, 1977, 1984) 
an experimentally identified order parameter describes a consistent and coherent 
pattern of the components of a system. Control parameters, that need not be spe-
cific to the order parameter, lead the system through its possible states as captured 
by the order parameter. Kelso (1984) identified the presence of phase transitions 
in the relative phase of bimanual coordination, thereby supporting the postulation 
of relative phase as the order parameter in bimanual coordination and movement 
frequency as a control parameter (Haken, Kelso, & Bunz, 1985; Kelso, 1995).

The standard deviation of relative phase has been a typical means of quantifying 
the stability of this order parameter in bimanual coordination. The Haken, Kelso 
and Bunz model (HKB model; 1985) captures the stability properties of bimanual 
coordination patterns and the occurrence of phase transitions with the scaling of 
a control parameter (movement frequency). Subsequent experiments have also 
identified the presence of additional phenomena in bimanual coordination such as 
critical fluctuations, hysteresis and critical slowing down that are hallmarks of the 
behavior of dynamic systems (Byblow, Summers, Semjen, Wuyts, & Carson, 1999; 
Post, Peper, Daffertshofer, & Beek, 2000; Scholz & Kelso, 1990).
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Schöner, Haken and Kelso (1986) introduced a stochastic term to the original 
HKB model to represent perturbations to relative phase during the performance of 
bimanual coordination patterns. The equation for the SHK model is:

	
d

dt
a b Q

�
� � �= − − +sin( ) sin( )2 2 	 (1)

Where φ is relative phase, a and b are control parameters, ξ is white Gaussian 
noise and Q is a parameter for the strength of this noise. With the inclusion of the 
stochastic term the model captures fluctuations in relative phase. These fluctuations 
induce phase transitions from antiphase to in-phase at control parameter values at 
which a limited degree of stability remains within the antiphase pattern. Empiri-
cal evidence has supported this model with respect to changes in the SD/variance 
of relative phase fluctuations at different control parameter values (Schöner et al., 
1986) as well as the control parameter values at which phase transitions occur 
(Molenaar & Newell, 2003).

Recently, it has been shown that the fluctuations in relative phase time series 
are not noise but contain time-dependent structure (Torre, Delignières, & Lemoine, 
2007). The finding of time dependent structure within fluctuations of the relative 
phase of bimanual coordination is consistent with a number of prior studies that have 
found that the variability of motor output typically does not follow a distribution 
of white Gaussian noise (see Newell & Slifkin, 1998 for a review). For example, 
structure within the time domain have been found in the variability of discrete move-
ments (Gilden, Thornton, & Mallon, 1995), continuous force production (Slifkin & 
Newell, 1999) and in fluctuations of the postural center of pressure (Yamada, 1995). 
The variability of motor output has also been found to deviate from the skewness 
and kurtosis of a Gaussian distribution (Newell & Hancock, 1984).

Lee, Blandin and Proteau (1996) have previously reported descriptive statistics 
of positive (i.e., leptokurtic) distributions in the in-phase and antiphase patterns 
at low movement frequencies. They found that kurtosis decreased as movement 
frequency increased, and even became negative (i.e., leptokurtic) in the antiphase 
pattern at high movement frequencies. However, in this study an inferential analysis 
of kurtosis data were not performed and the kurtosis values calculated were linear, 
rather than circular, even though relative phase is a circular variable. In addition, the 
point estimate of relative phase was calculated for only 12 s of data in each trial, 
making an estimation of the 4th distributional moment of data potentially unreliable.

When characterizing the variability of bimanual coordination with the SD of 
relative phase a general assumption is that the data follow a Gaussian distribution. 
The distribution of relative phase data in bimanual coordination has been described 
as violating the assumption of normality (Lee et al., 1996) but this assumption has 
not been formally tested. Violations of this assumption may invalidate statistical 
inferences and the comparison of standard deviation, mean, median and mode 
across groups (Fisher, 1930).

While the use of the SD to estimate variability assumes the presence of a Gauss-
ian distribution estimates of the degree of entropy make no assumption regarding 
distributional properties. In the calculation of entropy the potential range of data are 
divided into bins. An estimate of entropy is calculated based upon the probability 
of data occurring within each bin. In a broad distribution with an approximately 
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equal number of occurrences in each bin is high in entropy (and variability). When 
data are clustered within a few bins the entropy is low (Williams, 1997).

As the calculation and interpretation of estimates of entropy do not depend 
upon the presence of a Gaussian distribution this type of statistic is more versatile 
than the SD and can be used to characterize the amount of variability within more 
types of data. For example, in the analysis of relative phase variability it can be 
inappropriate to use the SD to estimate variability in intrinsically unstable coordina-
tion patterns that may not be statistically differentiable from a uniform distribution. 
Entropy is a statistically appropriate means of estimating variability in such cases.

A potential danger in using the SD to characterize variability in non-Gaussian 
distributions of data is that inaccurate conclusions might be drawn when compar-
ing the variability of different data sets. Differences in the SD of different sets of 
data might be attributed to differences in variability while these may in fact only 
be due to differences in the distributional properties of the sets of data (Newell & 
Hancock, 1984). This type of erroneous conclusion can be avoided by using entropy 
to estimate variability, as this type of statistic is independent of the distributional 
properties of data (Williams, 1997).

In addition, a theoretical complication of the HKB model and its derivations 
is an inconsistency between the assumptions of the term ξ as white Gaussian noise 
and the parameter relative phase. Relative phase is a circular variable in which, for 
example, a value of 0 radians (alternatively 0°) is the same as that of 2π radians 
(alternatively 360°). However, in linear statistics these two values are not equivalent. 
A Gaussian distribution, on the other hand, pertains to linear variables. Low data 
values within the linear Gaussian distribution cannot be equivalent to high values, as 
can occur with relative phase and circular statistics in general. In standard circular 
statistics the counterpart to the Gaussian distribution is the von Mises distribution. 
The properties of a von Mises distribution, which possesses a skewness and kurtosis 
of zero, are calculated using the sine and cosine functions. Circular inferential and 
descriptive statistics assume the presence of this distribution (Batschelet, 1981).

In the present experiment we examined the von Mises distribution to investigate 
the inconsistency between the Gaussian ξ term in the SHK model and relative phase, 
and to allow an experimental analysis of the distributional properties of the circular 
variable relative phase. If relative phase fluctuations do not follow a von Mises 
distribution then the traditional analysis of relative phase variability and stability 
through the use of the circular SD may not be appropriate. Therefore, if the higher 
moment distributional properties within data are not held constant a comparison 
of conditions based on the first and second moments of the distribution (i.e., the 
mean and SD) can be invalid (Fisher, 1930).

Methods

Participants

Young adult participants (N = 14; M = 22.4 years; SD = 3.1 years) were recruited 
from the University of Houston student body. All participants provided informed 
consent, and all procedures were in accordance with guidelines of the Institutional 
Review Board of the University.
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Apparatus

Participants had a custom made cylindrical cardboard sleeve placed over each 
forearm and hand, grasping a wooden handle inside the distal end of each sleeve. 
These cylindrical sleeves were of dimension 35 cm (length) × 7.5 cm (diameter), 
weight 121 g each and were held in place by two elastic and Velcro straps. Two 
infrared-emitting diodes were placed on the distal surface of each sleeve, the move-
ments of which were tracked in three dimensions by an Optotrak 3020 (Northern 
Digital Inc.; Waterloo, Ontario) motion analysis system. These cylindrical sleeves 
were used to prevent the recruitment of the wrist as a degree of freedom in the 
movement and also served as a mount for the infrared LEDs that were tracked by 
the Optotrak system. These sleeves are depicted in Figure 1.

The Optotrak system has a root mean square accuracy of 0.1mm for x- and 
y- coordinates, at a distance of 2.25 m, and of 0.15 mm for the z- coordinate at 
the same distance (Northern Digital Inc. web site). The Optotrak system software 
was run on a Dell Dimension 4550 computer with a sampling rate of 200 Hz. A 
Test Tone Generator auditory metronome with adjustable phase and tone dura-
tion settings was used to provide auditory tones and was run on an Acer Aspire 
3003LCi laptop computer placed alongside each participant. The phase setting on 
this auditory metronome was set to match trial relative phase conditions and a 100 
ms tone was used in all trials.

Figure 1 — The cylindrical sleeves worn over the forearms, wrists and hands to eliminate 
the recruitment of movement at the wrist joints.
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Procedure

Participants were seated 3 m in front of and facing the Optotrak 3020 system with 
elbows resting on a padded tabletop and upper arms at approximately a 45° angle. 
Participant elbows did not move during performance and were not restrained. A 
computer generated auditory metronome was played for 10 s immediately before 
and during movement trial data collection.

The task consisted of making flexion-extension movements of the elbow joints 
through approximately 90° of motion with the points of maximum extension of each 
arm in synchronization with the computer generated auditory tones. Participants 
performed three bimanual coordination patterns: in-phase, antiphase and 30° relative 
phase. In each relative phase condition auditory tones were generated such that by 
alternately synchronizing the points of maximum elbow extension with consecu-
tive tones the appropriate relative phase for each condition would be produced at 
a frequency of 1.1 Hz. In the in-phase condition the computer generated auditory 
tones were equally spaced at a frequency of 1.1 Hz rate with participants moving 
both arms together. In the antiphase condition the auditory tones were spaced with 
a 180° degree phase lag, which effectively consisted of tones played at a frequency 
of 0.55 Hz, but with alternate elbow extension coinciding with alternate auditory 
tones. In the 30° relative phase condition tones were phase lagged such that by 
coinciding alternate points of maximum arm extension with alternate auditory tones 
this relative phase pattern would be produced.

One trial of 180 s duration was performed in each relative phase condition with 
condition order counterbalanced across participants. Participants were instructed 
to begin moving their arms in the required fashion as soon as the auditory pacing 
tones began and data collection was initiated 10 s after the auditory tones began.

Data Analyses

Kinematic data for each 180 s movement trial were recorded by the Optotrak 
system at a sampling rate of 200 Hz, yielding time series of 16000 data points for 
each infrared light emitting diode marker and directional axis. Data pertaining to 
movement of the four infrared light emitting diode markers in the y-z (saggital) 
plane were filtered with a 4th order 10 Hz low-pass Butterworth filter and were 
used to determine the angular position of each arm at each time point.

In bimanual coordination the estimation of relative phase, which is considered 
the order parameter of the system, has been performed via several methods. One 
method is the Point Estimate of Relative Phase (PRP; Kelso, 1995). This method 
uses the equation:

	 PRP
t t

T
= − ×( )1 2 360 	 (2)

where t1 and t2 are times of local maximum (peak extension) for the two forearms 
and T is the period (time between consecutive t1 occurrences). The use of PRP 
allowed for the analysis of across-cycle fluctuations in relative phase and was 
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consistent with previous research on the properties of fluctuations in relative phase 
(Torre et al., 2007).

The PRP method was used to calculate the first 180 consecutive PRP values of 
both the maximum and minimum positional values (i.e., maximum elbow exten-
sion and flexion). In this way previously identified issues with continuous relative 
phase (Torre et al., 2007) were avoided while still providing information regard-
ing fluctuations in relative phase at two different points during movement cycles. 
In the results section the term maximum PRP denotes relative phase at points of 
maximum extension (at which synchronization with auditory tones occurred) while 
the term minimum PRP denotes relative phase at points of minimum extension at 
which no auditory tones occurred.

The information entropy (Shannon, 1948), H, of relative phase was calculated 
as:

	 H = -Σ pi log2 pi 	 (3)

where pi is the probability of data points occurring within the ith bin, with each bin 
being 10° in width with a total of 36 bins. Low information entropy values indicate 
a probability distribution concentrated within relatively few bins and low variability 
while high entropy values indicate a more equal distribution of data across bins 
and a greater degree of variability within the distribution.

As relative phase is a circular variable standard circular statistics were used in 
its analysis (Batschelet, 1981). The Raleigh uniformity test was used to determine 
if the relative phase of each time series was significantly clustered around a modal 
value. A uniform distribution of relative phase values within a time series would 
indicate that the participant did not produce a statistically identifiable coordination 
pattern. Relative phase time series identified as uniformly distributed were removed 
from subsequent analysis.

Watson’s U2 test (Batschelet, 1981) was used to determine if the relative phase 
time series differed significantly from a von Mises distribution. This test compares 
the goodness-of-fit of experimental data with the von Mises distribution. The mean 
squared deviation between the experimental and von Mises distributions is calcu-
lated. When this deviation is sufficiently high the experimental data are shown to 
be significantly different than the von Mises distribution.

For time series found to differ significantly from a von Mises distribution sta-
tistical tests of the skewness and kurtosis were conducted to determine the manner 
of deviation from this distribution. One-sample t tests of means were conducted 
on the circular skewness and kurtosis data to determine if these 3rd and 4th order 
statistical moments of experimental relative phase time series differed from those of 
a von Mises distribution. A 3 (Relative Phase) × 2 (Min/Max Endpoint) ANOVA of 
relative phase kurtosis values was performed to determine if this dependent variable 
changed as a function of these relative phase conditions or the endpoint of bimanual 
movements, one of which (minimum PRP) was synchronized with auditory tones.

In all analyses a type I error of α = .05 was used to determine statistical sig-
nificance. The calculation of dependent variable values was performed with coded 
MATLAB (Mathworks, Natick, MA) programs. All circular statistical analyses were 
performed in Oriana (Anglesey, Wales) circular statistics software.
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Results

Uniformity

Rayleigh tests of uniformity showed that out of 84 total trials 75 (89.29%) differed 
significantly from a uniform distribution. These nonuniform trials consisted of: 
13 trials (out of 14; 92.86%) in the in-phase minimum PRP condition, 14 trials 
(100%) in-phase maximum PRP; 13 trials (92.86%) in the antiphase minimum 
PRP condition, 14 trials (100%) in the antiphase maximum PRP condition; 10 
trials (71.43%) in the 30° minimum PRP condition, and 11 trials (78.57%) in the 
30° maximum PRP.

von Mises Distribution

After the uniformly distributed trials were removed from further analyses, Watson’s 
U2 tests indicated that a total of 42 trials (out of 75; 56%) differed significantly 
from a von Mises distribution. The trials that did not follow a von Mises distribu-
tion consisted of 13 trials (100%) in the in-phase minimum PRP condition, 12 
trials (85.71%) in the in-phase maximum PRP condition, 6 trials (46.15%) in the 
antiphase minimum PRP condition, 3 trials (21.43%) in the maximum PRP condi-
tion, 3 trials (30%) in the 30° minimum PRP condition, and 5 trials (45.45%) in 
the 30° maximum PRP condition.

Entropy

As shown in Figure 2 the entropy in the in-phase minimum PRP condition was 
1.76 (SD = 1.01) and for the maximum PRP condition 1.55 (SD = 0.41). In the 
antiphase minimum PRP condition entropy was 2.67 (SD = 1.00) and was 2.37 
(SD = 0.73) in the maximum PRP condition. For the 30° pattern the minimum PRP 
entropy was 4.30 (SD = 0.85) and 3.98 (SD = 1.05) for the maximum PRP. Note 
that these statistics were calculated from the entropy of all 84 experimental trials. 
If the SD of relative phase had been calculated only 33 out of 84 trials would have 
been useable to estimate this statistic due to their differing significantly from a 
von Mises distribution.

Mean Relative Phase

The mean relative phase in the maximum in-phase PRP condition was 0.38° (SD = 
2.85°), minimum in-phase PRP 355.23° (SD = 28.44°), maximum antiphase PRP 
181.06° (SD = 4.19°), minimum antiphase PRP 172.98° (SD = 29.45°), maximum 
30° PRP 92.74° (SD = 50.56°), and minimum 30° PRP 100.73° (SD = 44.17°). 
These values for in-phase and antiphase indicate the typical intrinsic stability of 
these coordination patterns. The deviation of the 30° pattern toward antiphase and 
its greater variability indicate the typical instability of and attraction of this pattern 
toward antiphase due to the influence of the intrinsic dynamics landscape (Buchanan, 
Zihlman, Ryu, & Wright, 2007; Fontaine, Lee, & Swinnen, 1997; Kelso & Zanone, 
2002; Zanone & Kelso, 1992, 1997).
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Skewness and Kurtosis

A one-sample t test of means of the circular skewness of time series distributions 
showed that no condition differed significantly from zero (all p > .05). See Figure 
3 for a representation of these data. A one-sample t test of means of the circular 
kurtosis of time series distributions showed that all three relative phase patterns 
differed significantly (both maximum and minimum PRP in-phase conditions p < 
.001; both maximum and minimum PRP antiphase conditions p < .001; 30° maxi-
mum PRP p < .05) from the kurtosis of the von Mises distribution (zero). Only the 
30° minimum PRP condition did not differ significantly from the kurtosis of a von 
Mises distribution (p > .05). The in-phase and antiphase patterns contained higher 
kurtosis (i.e., leptokurtic distributions) than a von Mises distribution while the 30° 
pattern contained a lower kurtosis (i.e., platykurtic).

As shown in Figure 4 the ANOVA of relative phase kurtosis showed that 
significantly different levels of kurtosis occurred as a function of relative phase 
condition, F(2,28) = 81.23, p < .001. Post hoc analysis showed that the in-phase 
kurtosis was significantly higher than the antiphase (p < .05) and the 30° (p < .001) 
relative phase conditions. The kurtosis in the antiphase condition was also signifi-
cantly higher than in the 30° relative phase condition (p < .001). No significant 
effect for Endpoint (maximum and minimum PRP) occurred, F(1,13) = 0.001, p 
> .05, or for the Relative Phase × Endpoint interaction, F(2,26) = 0.061, p > .05. 
Exemplar histograms of the relative phase distributions in each of the three relative 
phase conditions are shown in Figure 5.

Figure 2 — Entropy of relative phase as a function of relative phase condition and effector 
endpoint position.
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Figure 3 — Skewness of relative phase as a function of relative phase condition and effec-
tor endpoint position. MAX = endpoints of maximum elbow flexion, MIN = endpoints of 
maximum elbow extension.

Figure 4 — Kurtosis of relative phase as a function of relative phase condition and effec-
tor endpoint position. MAX = endpoints of maximum elbow flexion; MIN = endpoints of 
maximum elbow extension.
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Discussion
The stability properties of bimanual coordination patterns are typically characterized 
through the use of the SD of relative phase (Kelso, 1984; Haken et al., 1985; Post 
et al., 2000). The use of the SD to compare across data samples depends upon the 
assumption of a Gaussian distribution, in the case of linear statistics, and of a von 
Mises distribution in circular statistics. Prior research has suggested that the relative 
phase of bimanual coordination is not distributed normally and that the kurtosis 
of relative phase distributions may change as a function of the stability properties 
associated with changes in movement frequency (Lee et al., 1996). The assumption 
of normality in relative phase distributions has not previously been formally tested.

In the present experiment it was determined that 60% of the relative phase trials 
differed significantly from a von Mises distribution. These trials included those that 
were not distinguishable from a uniform distribution as well as those that contained 
a modal distribution but that did not follow a von Mises distribution. Analyses of 
the skewness and kurtosis of time series that did not follow a von Mises distribution 
indicated that the in-phase and antiphase relative phase time series had significantly 
greater kurtosis than that of a von Mises distribution while kurtosis significantly 
lower than that of a von Mises distribution occurred in the 30° required relative 
phase condition at the movement endpoints that coincided with auditory pacing 
tones (i.e., maximum PRP).

The intrinsically stable bimanual coordination patterns (i.e., in-phase and 
antiphase) possessed a significantly leptokurtic distribution while a coordination 
pattern considered to be intrinsically unstable (i.e., 30° relative phase) possessed a 
platykurtic distribution. It was also found that the degree of kurtosis was a function 
of relative phase pattern stability, with higher kurtosis values found in more stable 

Figure 5 — Exemplar histograms of the relative phase distributions in the a) in-phase 
condition, b) antiphase condition, c) 30° relative phase condition.
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patterns (e.g., in-phase) and lower kurtosis values in less stable patterns (e.g., 30° 
relative phase). These findings indicate that the distributional properties of rela-
tive phase vary with the stability of a coordination pattern, with relative phase in 
more stable patterns being more highly concentrated around a modal value (i.e., 
higher kurtosis) and less stable patterns being less concentrated around a modal 
value (i.e., lower kurtosis).

These changes in the kurtosis of relative phase fluctuations are qualitatively 
consistent with the gradient properties of the behavioral attractors found in the 
HKB model (Haken et al., 1985). In this model, at highly stable parameter values 
the basin of attraction is steep and resembles the distribution found in leptokurtic 
data. At less stable parameter values the basin of attraction broadens and more 
closely resembles a less leptokurtic, or even a platykurtic, distribution. The present 
results show that the distributional properties of relative phase fluctuations follow 
these general gradient properties found in the basin of attraction as captured by 
the HKB model but nevertheless hold statistical limitations for inferential tests.

An implication of relative phase distribution departing from a von Mises 
distribution is that it may not be appropriate to use the circular SD to estimate and 
compare the stability properties of coordination patterns in bimanual coordina-
tion. Circular statistical tests assume the presence of a von Mises distribution in 
data (Batschelet, 1981). However, the majority of experimental time series in the 
current study were determined to not follow this distribution. In light of the find-
ing that experimental relative phase data oftentimes do not satisfy the von Mises 
assumption of standard circular statistics, and in the interest of a conservative 
approach to experimental analyses, the use of entropy-based statistical measures 
(e.g., information entropy; Williams, 1997) of variability might be more appropriate 
than the standard distributional property of SD. Entropy measures do not depend 
upon assumptions regarding the distributional properties within data and, therefore, 
provide a more conservative and potentially more accurate means of assessing and 
comparing variability, and by implication stability, within relative phase time series.
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